

May 3, 2017 Product Specification

 Page 1 of 10

SHA Core, Xilinx Edition

5.1

Algotronix®

130-10 Calton Road
Edinburgh, Scotland
United Kingdom, EH8 8JQ
Phone: +44 131 556 9242
E-mail: cores@algotronix.com
URL: www.algotronix.com

Features

 Implements the SHA-256 algorithm specified
in FIPS180-4 Secure Hash Standard (August
2015).

 Targets all modern FPGA families from Xilinx.

 Supplied as easily customizable portable VHDL to allow customers to conduct their own code review
in high-security applications. Compilation options to include only required features and save area

 Supplied with comprehensive test bench.

Applications

 Authenticated Communications

 Block chain

General Description

This IP core implements the SHA-256 algorithm specified in FIPS180-4 which is widely used for
authenticating messages in communications and can also be used to authenticate stored data and in
blockchain algorithms. The implementation is based on the most recent version of the standard from
August 2015.

The core has a 32 bit data interface and uses a non-pipelined architecture to provide gigabit level
performance with good area efficiency on modern FPGA families. Algotronix will implement variants of
the core for different area/performance points or with longer message digests on request.

SHA-256 provides a 256 bit message digest and is considered to provider stronger authentication with
less chance of collisions than the GF-HASH algorithm used in AES-GCM (which provides a 128 bit hash
value), the CBC-MAC algorithm used in AES-CCM (which provides a 128 bit Message Authentication
Code) or the EIA3 authentication algorithm based on the ZUC stream cipher which provides a 32 bit
message digest. No secret information (such as a cryptographic key) is needed to compute the SHA-256
message digest of a known message. To use SHA-256 as a message authentication code to detect
tampering with a message the message digest should be encrypted.

 Core Facts

Provided with Core

Documentation User Manual

Design File Formats VHDL

Verification Test Bench, Test Vectors

Instantiation templates VHDL

Simulation Tool Used

Model Tech ModelSim, Xilinx Vivado Simulator

Support

Support provided by Algotronix

SHA Core

Page 2 of 10

The core is supplied with a comprehensive test bench implementing a self-testing version of the
synthesizable core which compares its outputs with a behavioral model of SHA under random testing and
can also make use of SHA Verification System test vectors provided by NIST in both regression testing
against known answer supplied by NIST and qualification testing to generate a response file for validation
by a NIST test lab.

Table 1 shows example implementation statistics for the core in the simple configuration most commonly
used for comparison purposes. The SHA core can be targetted at all Xilinx FPGA families, including older
devices not listed in the table below. Algotronix will supply implementation results for the most recent
version of the core in particular core configuration required in your application on request.

Table 1: Example Implementation Statistics for SHA-256, ‘Push Button’ flow with Fmax specified
by clock constraint.

Family Example Device Fmax

(MHz)
LUT LUTRAM GCLK2 BRAM

1

FF DCM Throughput

(MBit/sec)3

Design

Tools

Zynq

Ultrascale

XCZU2eg-sfva625-

3-e

307 1302 32 1 0 1027 0 2,456 Vivado

2016.4

Notes:

1) BRAM count is 36K tiles.

2) GClk signal is normally shared with user’s design.

3) Typical throughput for long messages.

Algotronix ®

 Page 3 of 10

Functional Description

The main functional blocks are shown in Figure 1.

SHA-256 is a cryptographic hash function, the SHA-256 algorithm works on 512 bit blocks of data and
computes a 256 bit message digest. The core has two main modules, the first adds length information to
the message and pads it to a 512 bit boundary. The second calculates the message digest based on the
padded data.

There is no message_width signal to the SHA module because at that point the data is padded to a 512
bit boundary so there is no partial word at the end of the message. The final signal to the SHA module
will usually occur several clock cycles after the final signal to the insert padding module because the data
is being expanded.

Figure 1, SHA-256 Core Block Diagram

SHA Core

Page 4 of 10

Compilation Options

The core can be configured easily using a set of VHDL generic parameters. Normally, it is unnecessary
for users to modify the design source code although the code is supplied and they are free to do so if they
wish. Algotronix can also customise the core as a service for users with particular requirements which are
not met by the standard product.

The following compilation options are specified by editing constant definitions in the
sha_parameters_package file. This is the only file in the SHA core release which will normally be edited
by the user.

 target_device – In the Xilinx Edition version of the core only Xilinx devices are supported, target
device should be set to XILINX_VIRTEX_5 which will support all recent device families with 6
input LUTs.

Algotronix ®

 Page 5 of 10

Core I/O Signals

The core signal I/O have not been fixed to specific FPGA device pins to provide flexibility for interfacing
with user logic. Descriptions of all signal I/O for the SHA core is provided in Table 2.

Signal Signal

Direction
Description

clock input Clock – active on rising edge

reset input Reset – active high. A global constant in zuc_package.vhd

USE_ASYNCHRONOUS_RESET determines whether this is a

synchronous or asynchronous reset. On Xilinx FPGAs a synchronous

reset is usually more efficient.

enable input Module clock enable – 0: module is inactive, 1: module operates. In the

description of the functionality of the other signals enable is assumed to be

high.

start input Instructs the core to start a new message. The first word of text for the

message will be loaded when the core brings load_text high.

final input End marker,set to high on the last word of the input message.

load_text output Indicates the core will load message text on the rising edge of the clock.

message[31:0] input Data input: 32-bit word. Message to be hashed. The core loads text in 512

bit blocks using 16 cycles of this bus. The last block can be brought to an

end before all 16 cycles using the final signal. After each block is loaded

there is a delay before load_text goes high again while the data is

processed.

message_width(5 : 0) input Width of final word of message in bits, required because message is not

required to be an integral number of 32 bit words.

message_digest_valid output Valid flag – high when output_text is valid.

message_digest(31:0) output Message digest, core requires 8 clock cycles to output entire 256 bit

message digest over this bus.

Table 2: SHA-256 Core I/O Signals.

SHA Core

Page 6 of 10

Description of Operation
The message is input over the message bus 32 bits at a time when load_text is high using as many clock
cycles as required. Processing is done in units of 512 bits and after a block is loaded the load_text signal
will be brought low while the core is processing. Words are transferred in order starting with the most
significant word. The message can end on any bit boundary so the final 32 bit input word may be
incomplete and a message_width input is provided to specify how many bits of the final word are valid.
Bits are regarded as being in order starting with the most significant bit so the ‘empty’ section of the final
word is in the least signficant bits.

The SHA-256 standard specifies a padding algorithm to pad out the final block to 512 bits before
processing. The padding algorithm also inserts message length information into the data to be processed:
a message which was an exact multiple of 512 bits before padding will not be a multiple of 512 bits after
including the length information and so would still need padded to a 512 bit boundary. The padding is
done automatically by the core but users need to be aware of the consequences for flow control and
maximum throughput of the message being extended to a 512 bit boundary. The core is effectively
processing a longer message than that supplied by the user so the delay between the final signal marking
the end of the input message and the message_digest_valid signal marking that the message_digest has
been computed will vary depending on how much padding was required. For short messages the
padding length may be significant relative to message data length.

Synchronising between the user design and the core is straightforward. The user controls when the core
processing starts using the ‘start’ signal. When the core samples ‘start’ as being high on a rising edge of
the clock it starts processing a new message and will bring load_text high as soon as it is ready for the
first word of data. If start is brought high while the core is midway through processing a message the
previous message will be abandoned. Normally the user design containing the core will wait until the
message_digest for the previous message has been output before bringing start high for the next
message.

The user design can use the enable signal to implement flow control if it is not ready to provide input data
or accept the output data – bringing enable low will stop the core processing.

The best way to get an understanding of the timing of the interface signals to the core is to simulate the
core using the testbench provided and examine the waveforms on the signals in the table above during
operation in the mode of the cipher you wish to use.

Algotronix ®

 Page 7 of 10

Verification Methods
The testbench includes a self-checking configuration of the top level entity in the VHDL design which uses
a behavioral model of the SHA algorithm to check the results from the synthesisable implementation code.
This is implemented using the VHDL facility to provide multiple architecture definitions for a particular
entity: the top level entity in the design has a self_checking and a synthesis architecture defined. The
SHA behavioral model is validated using known-answer examples provided in the ZUC standard and by
loop-back testing.

As shown in Figure 2, the self checking architecture has an identical interface to the synthesisable
architecture and instances the synthesisable architecture within itself but also contains behavioral code to
capture all input and output signals and check their values against expected values computed using a
behavioral model. When errors are detected assertions are triggered and the simulation is stopped with
an error message.

This self-checking configuration of the SHA core can also be instantiated within the user's own
simulations. This makes it easy to verify the core operates properly when connected to the user circuitry
surrounding the core. In addition, the assertions within the self checking code will detect and report many
situations where the user design is not driving the core correctly simplifying the task of integrating the core
with the larger user design easier.

The SHA testbench supplied with the core also makes use of the self checking configuration of the core
for random testing. The testbench stimulates the self checking core with a random sequence of test data
and the self checking core takes responsibility for detecting any errors.

As well as random testing the testbench implements known-answer-tests using Secure Hash Algorithm
Validation System (SHAVS) test vectors supplied by NIST and can generate response files for SHA
algorithm validation by a NIST approved test laboratory.

SHA Core

Page 8 of 10

Figure 2, SHA Self Checking Architecture

Customization Service
Algotronix can offer a cost effective customization service for this core in order to tune the implementation
for easy integration into a larger system. It is also possible to produce variants with significantly higher
performance at the expense of increased area and to create optimized variants of the core targeted at
particular FPGA products.

Recommended Design Experience

It is recommended that the user is familiar with the VHDL language and with the Xilinx design flow and
simulation tools. The core can also be instantiated inside a wrapper to allow use with a Verilog design
flow.

It is also recommended that the user has a background in data security or takes appropriate advice when
considering how to implement ZUC in a larger system.

Related Standards

1. FIPS PUB 180-4 “Secure Hash Standard” August 2015. http://dx.doi.org/10.6028/NIST.FIPS.180-
4

2. “The Secure Hash Algorithm Validation System (SHAVS)”, NIST report, updated May 2014.

Algotronix ®

 Page 9 of 10

Ordering Information

This product is available directly from Algotronix under the terms of the SignOnce IP License. Please
contact Algotronix for pricing and additional information about this product using the contact information
on the front page of this datasheet. To learn more about the SignOnce IP License program, contact
Algotronix or visit the web:

Email: commonlicense@xilinx.com
URL: www.xilinx.com/ipcenter/signonce

Export Control
Strong encryption technology such as SHA is the subject of international export regulations. Algotronix is
located in the United Kingdom and export of this core is regulated by the UK government.

The core is freely available within the European Union and in addition can be supplied immediately to the
following countries: United States, Australia, New Zealand, Canada, Norway, Switzerland, Japan.

Export to other countries requires an export licence. The UK Department of Business, Enterprise and
Regulatory Reform publishes information on their website (www.berr.gov.uk) which gives an indication of
average export licence processing times for various countries and the percentage of licence requests
which are granted. For many countries obtaining an export licence can be done relatively quickly and with
only a small amount of paperwork.

It is the the responsibility of the customer to comply with all applicable requirements with respect to re-
export of products containing the ZUC technology.

Related Information

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx
sales office, or:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com

SHA Core

Page 10 of 10

Copyright © 2002-2017 Algotronix Ltd., All Rights Reserved.

Algotronix® is a registered trademark of Algotronix Ltd. in the United States and United Kingdom and a
trademark of Algotronix Ltd. in other countries.
The supply of the product described in this document is the subject of a separate license agreement with
Algotronix Ltd. which defines the legal terms and conditions under which the product is supplied. This
product description does not constitute an offer for sale, a warranty of any aspects of the product
described or a license under the intellectual property rights of Algotronix or others. Algotronix products are
continuously being improved and are subject to change without notice. Algotronix products are supplied
‘as is’ without further warranties, including warranties as to merchantability or suitability for a given
purpose. Algotronix’ products are not intended for use in safety critical applications.

URL: www.algotronix.com

