

June 2014 Product Specification

 Page 1 of 12

AES Core G3, Xilinx Edition

5.1

algotronix®

130-10 Calton Road
Edinburgh, Scotland
United Kingdom, EH8 8JQ
Phone: +44 131 556 9242
E-mail: cores@algotronix.com
URL: www.algotronix.com

Features
• Selectable internal and external data path

widths of 8, 16, 32, 64 or 128 bits allow
optimal area vs performance tradeoff

• Full Implementation of FIPS 197 and SP800-
38A
- 128, 192 and 256 bit keys
- Encrypt only, Decrypt only or

Encrypt/Decrypt
- ECB, CBC, OFB, CTR, CFB1, CFB8 and CFB128 mode

• Full Implementation of AESAVS testbench
- Regression Mode for confirming design functionality
- Qualification Mode for generating response files for certification lab.

• Supplied as VHDL source code to allow security review
• Available under the terms of the SignOnce IP Licence

Applications
• Government/Military

• Satellite

• Secure Computer Systems

• Gaming Machines

• Storage Area Networks (SAN)

• Digital Rights Management (DRM)

• Wireless Networking

 Core Facts

Provided with Core

Documentation User Manual

Design File Formats VHDL Source Code

Verification Test Bench, Test Vectors

Instantiation templates VHDL

Reference designs &

application notes
‘Getting Started’, ‘Choosing

Configuration Options’

Additional Items ‘Getting Started’ Sample design

demonstrates core on Xilinx Spartan

3 Eval Board

Simulation Tool Used

Model Tech ModelSim, ISim

Support

Support provided by Algotronix

http://www.algotronix.com/

AES Core G3

Page 2 of 12

General Description
The Algotronix G3 AES Core is the third generation of Algotronix comprehensive, production tested
implementation of the NIST Federal Information Processing Standard 197 (FIPS197). G3 improves over
the popular G2 product by allowing the widths of internal and external data path to be selected by the
user; G3 also includes optimisations which allow it to implement the AES algorithm in fewer clock cycles
than leading competitors and improve clock frequency and area on Xilinx FPGAs significantly compared
with G2. Wider data paths require more logic and RAM blocks but provide higher performance, thus by
allowing fine control over the data path width the G3 product allows the user to achieve the required
performance with the minimum area. A single G3 core licence offers all the implementation options which
competitive IP vendors would split into separate ‘standard’, ‘small’ and ‘fast’ products making a G3 multi-
project licence particularly cost effective. For very high performance (multi gigabit) applications a
parallelised ECB mode where multiple data paths simultaneously operate on the same data stream can
be purchased separately.

The G3 core supports all the key lengths specified in the FIPS 197 standard (128, 192 and 256 bits) and
all the modes of use specified in NIST SP800-38A – ECB, CBC, OFB, CTR, CFB1, CFB8 and CFB128.
The core is supplied with a comprehensive testbench which implements the NIST AESAVS test suite for
AES. The testbench can be used in regression mode to verify changes to the source code or in
qualification mode to generate response files for a NIST approved laboratory.

The Algotronix AES core is supplied as VHDL source code and can be configured using a number of
VHDL generic parameters to select only those features which are required in order to conserve area. The
core can be configured as Encryptor, Decryptor or Encryptor/Decryptor and the maximum key length and
required modes can also be selected. The core can be configured to generate the key schedule in
hardware or to save area a software generated key schedule can be loaded. This level of flexibility
makes it easy to experiment with area/performance/functionality tradeoffs and makes it highly likely that
the core will be useful in multiple projects. The wide applicability of the core makes multi-project site
licences particularly attractive.

The AES core is an easy to use fully synchronous design with a single clock and an enable signal to allow
the core to be started and stopped on a clock cycle by clock cycle basis to match up with external data
sources. The core has been designed for efficiency in Xilinx FPGAs and makes full use of FPGA specific
features such as dual port memory blocks.

Algotronix ®

 Page 3 of 12

Table 1a: Example Implementation Statistics with a 128 bit datapath – ECB, Encrypt Only, 128 bit
key, ‘Online’ Hardware Key Expansion, ‘Push Button’ flow with Fmax specified by clock constraint

Family Example Device Fmax

(MHz)
Slices /

CLBs 1

IOB2 GCLK BRAM MULT/

DSP48
DCM Throughput

(MBit/sec)

Design

Tools

Kintex XC7K325-1 266 435 394 1 0 0 0 3413 Vivado

2014.1

Zynq XC7Z100-2 222 443 394 1 0 0 0 2841 Vivado

2014.1

Kintex Ultra

Scale

XCKU035-1 222 263 394 1 0 0 0 2841 Vivado

2014.1

Spartan 6 XC6LX150-3 173 515 394 1 0 0 0 2225 ISE 14.7

Table 1b: Example Implementation Statistics with a 32 bit datapath – ECB, Encrypt Only, 128 bit
key, ‘Online’ Hardware Key Expansion, ‘Push Button’ flow with Fmax specified by clock constraint

Family Example Device Fmax

(MHz)
Slices 1 IOB2 GCLK BRAM MULT/

DSP48
DCM Throughput

(MBit/sec)

Design

Tools

Spartan 6 XC6LX150-3 212 423 106 1 0 0 0 678 ISE 14.7

Table 1c: Example Implementation Statistics with a 64 bit datapath – ECB, Encrypt Only, 64 bit
key, ‘Online’ Hardware Key Expansion, ‘Push Button’ flow with Fmax specified by clock constraint

Family Example Device Fmax

(MHz)
Slices 1 IOB2 GCLK BRAM MULT/

DSP48
DCM Throughput

(MBit/sec)

Design

Tools

Spartan 6 XC6LX150-3 190 609 202 1 0 0 0 1216 ISE 14.7

Table 1d: Example Implementation as Table 1a except with AES SBoxes mapped into Block RAM
rather than LUTs.

Family Example Device Fmax

(MHz)
Slices 1 IOB2 GCLK BRAM

(RAMB

18)

MULT/

DSP48
DCM Throughput

(MBit/sec)

Design

Tools

Spartan 6 XC6LX150-3 172 307 394 1 10 0 0 2206 ISE14.7

Notes:

1) Actual slice count dependent on percentage of unrelated logic – see Mapping Report File for details

2) Assuming all core I/Os and clocks are routed off-chip, which is not the intended usage. The core interface is designed to provide

flexibility inside a larger FPGA design and is usually not directly connected to pins. Devices were chosen to meet I/O requirement,

smaller devices could be used if ports were not directly connected to pins.

3) Area and performance numbers can vary significantly depending on synthesis and mapping options and software version.

AES Core G3

Page 4 of 12

Functional Description

The main functional blocks as shown in Figure 1 .

ECB Data Path

This block implements the ECB mode of the AES Algorithm. All other modes of AES are built on top on
this basic encryption operation.

Key Schedule

This block calculates the round keys for each stage of the AES algorithm based on the key supplied by
the user. A compilation option allows the user to omit this unit to save area in which case the core must
be supplied with the complete keyschedule. This option may make sense if the key changes relatively
infrequently and there is a microprocessor available elsewhere in the system to calculate the
keyschedule.

AES Mode Logic
This block contains the feedback paths and additional logic required to implement the more complex
modes of AES – CBC, OFB, CFB1, CFB8, CFB128 and CTR. Compilation parameters are supplied so
only the logic for those modes which are required by the user will be instantiated.

Figure 1, AES Core Block Diagram

Algotronix ®

 Page 5 of 12

Core Modifications
The core can be configured easily using a set of VHDL generic parameters. Normally, it is unnecessary
for users to modify the design source code although the code is supplied and they are free to do so if they
wish. Algotronix can also customise the core as a service for users with particular requirements which
are not met by the standard product.

The following compilation options are specified by editing constant definitions in the
aes_parameters_package file. This is the only file in the AES core release which will normally require to
be edited by the user.

• cipher_function - specifies whether an Encryptor, Decryptor or Encryptor/Decryptor is required.

• max_crypt_size – specifies the maximum key length the core should implement. The user can
select any key length up to and including this maximum during operation using the key_length
signal. For example, if Max_Crypt_Size is aes256 then the core would deal with 256, 192 and
128 bit keys.

• internal_data_path_width – This parameter specifies the width of the datapath in the main
encryption unit. The wider the datapath the more logic will be required and the fewer clock cycles
required per encryption. Possible values are 8, 16, 32, 64 and 128 bits.

• external_data_path_width – This parameter specifies the width of the datapath in the unit that
interfaces with the users design and implements the various cipher modes. This unit is only
used during I/O operations which are a relatively small fraction of the total processing time.
Specifying a lower data path width for this unit than the main encryption data path can save area
without having a large effect on performance. Possible values are 8, 16, 32, 64 and 128 bits.
The external data path width must be less than or equal to the internal data path width. If the
internal data path width is less than 32 bits then the external data path width must equal the
internal data path width.

• implement_sboxes_in_ram – specifies that FPGA RAM blocks rather than logic gates should be
used to implement SBoxes and Inverse SBoxes. For modern Xilinx FPGAs with 64 bit LUT
memories implementation using logic resources is area efficient and slightly faster than
implementation in RAM blocks. The best approach is usually to set this parameter according to
balance overall resource utilitsation (e.g. if the user design outside of the AES core requires many
LUTs but does not use much block RAM then set to true to minimise the AES core's use of LUTs
and take advantage of block RAM that would otherwise be unused).

• keyschedule_shares_sboxes – specifies that the SBoxes provided in the main encryption
datapath should be used by the Keyschedule hardware rather than providing dedicated Sboxes in
the hardware keyschedule unit. This means that the hardware keyschedule unit cannot operate
at the same time as the main datapath so KC_ONLINE cannot be used. With KC_OFFLINE this
option is normally preferred since it saves several RAM blocks.

• omit_ecb_mode, omit_cbc_mode, omit_ofb_mode, omit_c tr_mode, omit cfb1_mode,
omit_cfb8_mode, omit_cfb128_mode - Used to request that logic to support cipher modes that
will not be required is omitted from the design. The CTR and CFB modes in particular require
quite large amounts of additional logic.

• ctr_mode_counter_width – Specifies the width of the counter used in CTR mode in bits. The
counter is placed in the least significant bit positions. The counter and the non-counter bit
positions are initialised from the initial value. The counter width must be wide enough to ensure
that it will not wrap round and output the same value twice for the longest possible data stream
between key changes. If the counter is too short CTR mode security will be compromised.
Making the counter unnecessarily wide (e.g. selecting 128 bits) is wasteful of area and may result
in a slower critical path and hence lower performance.

AES Core G3

Page 6 of 12

• keyschedule_calculation – one of the following options:

• KC_OFFLINE – this is the most common option because it is particularly flexible and area
efficient. The keyschedule is calculated each time the start signal is pulsed high and a key is
loaded. The keyschedule is then stored in a memory block and used for each data block to
be encrypted. Thus, there is a delay while the keyschedule is calculated before the first
block in a chain of blocks can be encrypted but after that the encryption takes place at full
speed. OFFLINE mode allows the SBoxes to be shared between the keyschedule unit and
the encryption datapath which often reduces the overall number of RAM blocks required.

• KC_ONLINE – the keyschedule is calculated ‘online’ as it is required. This option allows the
encryption operation to start immediately after the key is loaded, avoids the need for a
keyschedule buffer memory and can sometimes provide a higher operating clock frequency.
ONLINE can only be used with data path widths of 32 bits or less because the keyschedule
algorithm is specified to calculated a 32 bit round key each clock cycle and cannot generate
64 or 128 bit round keys directly – the memory buffer provided in OFFLINE mode is required
to change the round key width. Also, the keyschedule algorithm generates the round keys in
the order required for encryption – thus ONLINE can only be used with CFB, OFB and CTR
modes which use the basic AES ECB core in encrypt for both encrypt and decrypt operations
and for Encrypt only ECB and CBC designs.

• KC_USER – this option allows the user to calculate the complete keyschedule with software
and load the keyschedule directly into the buffer memory rather than supplying an encryption
key and having the hardware keyschedule unit calculate the keyschedule. This option is
useful to save area in systems with a microprocessor and where the key changes relatively
infrequently.

• KC_USER_OVERLAPPED – this option is the same as USER except that a dual-bank buffer
for the keyschedule is provided so that the user can write a new keyschedule while the core
continues to operate using the previous keyschedule. This option eliminates the latency
associated with switching keyschedules at the expense of additional block RAM in the
keyschedule unit.

• force_output_low_until_valid – When true the core will hold the output low at all times when
valid output data is not present. When this signal is false the circuitry to hold the output zero will
be omitted, saving some area. In this case the core output ‘output_text’ will show the values at
intermediate rounds of the cipher as well as the final round. This data is not fully encrypted and,
if available to an attacker, could compromise security of both the key and data. Therefore, this
parameter should only be set to false if the user design which contains the core can guarantee
that an attacker will not be able to monitor the core output directly.

Algotronix ®

 Page 7 of 12

Core I/O Signals
The core signal I/O have not been fixed to specific FPGA device pins to provide flexibility for interfacing
with user logic, normally core I/Os will connect to signals within th euser design and the multiple wide
busses will be multiplexed together at a higher level in the system before being taken to I/O pins.
Descriptions of all I/O signals are provided in Table 2.

AES Core G3

Page 8 of 12

Signal Signal

Direct
ion

Description

clock input Clock – active on rising edge

reset input Asynchronous reset – active high. Usually connected to FPGA global reset. For Xilinx it

is recommended to use synthesis options to convert to a synchronous reset to allow a

more efficient mapping to FPGA resources.

enable input Module clock enable – 0: module is inactive, 1: module runs

mode input Mode signal – specifies which mode of AES is to be implemented. See also the omit_*

compilation options in the section below. If compilation options have specified that logic

for a particular mode should be omitted then incorrect behaviour will result if that mode is

selected.

key_length input Specifies the length of the key that is being used – 128, 192 or 256 bits. See also the

max_crypt_size compilation option. Only keys up to the size specified in max_crypt_size

may be specified e.g. if max_crypt_size generates hardware for a 192 bit key then

KeyLength may be 128 or 192 bits but not 256 bits.

do_encrypt input Specifies whether the core should operate in Encrypt or Decrypt mode. This input is only

significant if the compilation option cipher_function is set to EncryptDecrypt i.e. hardware

for both encryption and decryption has been included.

start input Starts a new encryption operation or block of operations in the chained modes. The

control signals mode, key_length and do_encrypt are sampled and the parameters fixed

for the next operation. The key is assumed to have changed and the keyschedule is

recalculated (or loaded if the compilation option User_Calculates_Keyschedule is active).

keyschedule_start input Used in KC_USER, KC_USER_OVERLAPPED and KC_OFFLINE_OVERLAPPED

keyschedule calculation modes ONLY, this signal is ignored in other modes. Indicates

the start of a new user keyschedule. Key_length, do_encrypt and mode signals are

sampled when this signal is high. The address counter is cleared so the next word of

keyschedule to be loaded is the first word of the keyschedule.

user_keyschedule_
load_enable

input Used in KC_USER, KC_USER_OVERLAPPED keyschedule calculation modes only.

Enable signal to indicate that the core should load the next word of keyschedule data on

the high going clock edge. This signal allows loading the keyschedule to be spread out

over a long time period which is convenient when the calculation is being done by a

microprocessor and there is a time delay between each word being available.

keyschedule_bank_

select

input Used in KC_USER_OVERLAPPED and KC_OFFLINE_OVERLAPPED keyschedule

calculation modes only. Specifies which bank of keyschedule memory should be used

by the datapath circuitry. This signal is sampled when start or clear is active. After reset

the core will use bank 0. Inverting this signal before bringing start high will swap the

‘new’ keyschedule over with the ‘active’ keyschedule.

 new_keyschedule_ready output Used in KC_OFFLINE_OVERLAPPED keyschedule calculation mode only. Indicates

that the overlapped keyschedule calculation is complete and it is possible to switch to the

new keyschedule.

advanced_load_text output High on the clock cycle immediately preceding load_text going active. This signal can be

used for flow control in conjunction with the enable signal to the core to stop processing if

the next block of text is not ready.

load_text output Load flag – high when input_text is being loaded.

load_key output Load flag – high when the key is being loaded in KC_ONLINE or KC_OFFLINE

keyschedule calculation modes. Not used in KC_USER or KC_USER_OVERLAPPED

Algotronix ®

 Page 9 of 12

mode where the user supplies the whole keyschedule rather than a key.

output_valid output Valid flag – high when output_text is valid.

 advanced_output_valid output High on the AES round immediately preceding output_valid. The number of clock cycles

per round depends on the internal data bus width – with a 128 bit databus this signal will

go high for a single clock cycle, with an 8 bit databus it will be high for 16 clock cycles.

This signal gives advanced warning that the core is about to input and output data and

can be used for flow-control by external control circuitry which stops the core using the

enable signal until the system is ready to provide new input data and accept output data.

input_text[width-1:0]
input Data input: current word of the 128-bit plain text. The width of this bus is specified by the

data_path_width generic parameter. Where the data path is less than 128 bits wide

multiple words are required to transfer a 128 bit AES data block – e.g. with a 32 bit data

path 4 words are transferred in successive clock cyles.

 output_text[width-1:0]
output Data output: current word of the 128-bit cipher text

 initial_value[width-1:0]
input Current word of the 128-bit initial value for the chained modes of operation (ECB mode

does not use the initial_value).

input_key[internal_data_p

ath_width - 1:0]

input The width of this bus is the same as the main datapath. If the keyscedule calculation

mode is KC_USER or KC_USER_OVERLAPPED the entire keyschedule is input through

this bus.

Table 2: Core I/O Signals.

AES Core G3

Page 10 of 12

Verification Methods
Algotronix supplies a comprehensive VHDL testbench for the core which supports the standard AESAVS
test suite with additional vectors from the SP800-38A publication to test the various AES modes. The
testbench allows simulation of the design source code and also post place and route timing simulation.
The testbench can be used in Regression mode to confirm the functionality of the core against known
‘golden’ test vectors provided by Algotronix or in Qualification mode to generate response files from
vectors supplied by a NIST approved certification laboratory.

To provide immediate confidence that the core works correctly in hardware the ‘Getting Started’
Application note provided with the core supplies with VHDL code and design files to demonstrate the core
running on a Xilinx Spartan 3 evaluation board. This low cost board is available directly from Xilinx.

This core is in production with multiple design-ins on several FPGA families.

Recommended Design Experience
It is recommended that the user is familiar with the VHDL language and with the Xilinx design flow. The
core can also be instantiated inside a wrapper to allow use with a Verilog design flow.

Selection of the cipher mode of use of AES has implications for overall security, ease of use and
performance and it is recommended that if the user is not a specialist in cryptography advice should be
taken when selecting the appropriate mode for the application.

Available Support Products
Algotronix supplies two application notes and assoicated source code free of charge with the core:

Getting Started: This application note is intended to be the equivalent of ‘Hello World’ in C – it is a very
simple wrapper providing the minimum logic required to instantiate the core on an evaluation board and
carry out an encryption. The results are displayed on the seven segment LEDs on the Spartan evaluation
board. The getting started design is also useful as an initial ‘confidence test’ when bringing up the core
on a new circuit board designed by the user since it requires that the board supply only a clock, a reset
signal and LEDs to display the result. This application note also provides example timing waveforms for
use of the core.

Choosing Configuration Options for the G3 AES Core: This application note provides additional
information on the various modes of the AES algorithm and how to select the appropriate one for your
application. It also describes the various generic parameters in more detail and provides guidance on the
best options.

Algotronix ®

 Page 11 of 12

Ordering Information
This product is available directly from Algotronix under the terms of the SignOnce IP License. Please
contact Algotronix for pricing and additional information about this product using the contact information
on the front page of this datasheet. To learn more about the SignOnce IP License program, contact
Algotronix or visit the web:

Email: commonlicense@xilinx.com
URL: www.xilinx.com/ipcenter/signonce

Export Control
Strong encryption technology such as AES is the subject of international export regulations. Algotronix is
located in the United Kingdom and export of this core is regulated by the UK government.

The core is freely available within the European Union and can be supplied immediately to the following
countries: United States, Australia, New Zealand, Canada, Norway, Switzerland, Japan.

Export to other countries requires an export licence. The UK government’s Department of Business,
Enterprise and Regulatory Reform (previously known as Department of Trade and Industry) publishes
information on their website (www.berr.gov.uk) which gives an indication of average export licence
processing times for various countries and the percentage of licence requests which are granted. For
many countries obtaining an export licence can be done relatively quickly and with only a small amount of
additional paperwork.

It is the the responsibility of the customer to comply with all applicable requirements with respect to re-
export of products containing the AES technology.

Related Information
Industry Information

The AES standard documents FIPS197, SP800-38A and AESAVS are available from the National
Institute of Standards and Technology, Computer Security Resouce Center website
(www.csrc.nist.gov).

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx
sales office, or:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com

http://www.xilinx.com/ipcenter/signonce
http://www.berr.gov.uk/
http://www.csrc.nist.gov/
http://www.xilinx.com/

AES Core G3

Page 12 of 12

Copyright © 2002-2014 Algotronix Ltd., All Rights Reserved.

Algotronix® is a registered trademark of Algotronix Ltd. in the United States and United Kingdom and a
trademark of Algotronix Ltd. in other countries.
The supply of the product described in this document is the subject of a separate license agreement with
Algotronix Ltd. which defines the legal terms and conditions under which the product is supplied. This
product description does not constitute an offer for sale, a warranty of any aspects of the product
described or a license under the intellectual property rights of Algotronix or others. Algotronix products
are continuously being improved and are subject to change without notice. Algotronix products are
supplied ‘as is’ without further warranties, including warranties as to merchantability or suitability for a
given purpose. Algotronix’ products are not intended for use in safety critical applications.

URL: www.algotronix.com

Version Control Information
Subversion Revision Number 50

Date 2014/06/10 11:41:34

Document Aes G3 Data Sheet, Xilinx Edition

Status (blank field indicates OK/no warnings)

 (Table auto-updates, do not edit field values by hand)

http://www.algotronix.com/

